species from the prerequisite Z enolate such that we could bias the stereoselection in favor of the syn (erythro) diastereoisomers and, perhaps more specifically, the 24S,25R component.^{15,16} A cross-aldol reaction between the lithium enolate derived from 8 and the aldehyde 13 was effected under time and temperature controlled conditions to afford a mixture of two diastereomeric products 14, $[\alpha]_D - 17.16^\circ$, in 76% yield (Scheme IV), in which the desired 24S,25R syn isomer was a major component (>7:3).

At this juncture, it was therefore of paramount importance to secure an appropriate degradation product of rifamycin S that contained the intact C19–C29 segment and to be able to establish the constitutional and configurational identity of the aldol product 14. Degradation of rifamycin S is known to provide a dienic ester fragment 20.¹⁷ This was further manipulated¹⁸ to give the acetal 17, mp 73–74 °C, $[\alpha]_D + 20^\circ$, and the pentaacetate derivative 19, $[\alpha]_D \sim 0^{\circ,19}$ which were suitable compounds for our correlation. Reduction of the C23 carbonyl function with diisobutylaluminum hydride proceeded with high stereoselectivily (>10:1) to give the desired 15. Catalytic hydrogenolysis produced major compound 16,²⁰ $[\alpha]_D - 3.2^\circ$, which was further transformed into the crystalline

(15) Heathcock, C. H.; Pirrung, M. C.; Lampe, J.; Buse, C. T.; Young, S. D. J. Org. Chem. 1981, 46, 2290-2300 and references cited therein. Heathcock, C. H.; Young, S. D.; Hagen, J. P.; Pirrung, M. C.; White, C. T.; Van Der Veer, D. Ibid. 1980, 45, 3846-3856.

(16) The selectivity in the aldol condensation can be rationalized based in part on a coordinated transition state¹⁵ involving the benzyloxy group.
(17) Kinoshita, M.; Tatsuta, K.; Nakata, M. J. Antibiot. 1978, 31,

(17) Kinoshita, M.; Tatsuta, K.; Nakata, M. J. Antibiot. 1978, 31, 630-632.

(18) The following steps were involved: (a) O₃; (b) NaBH₄; (c) Ac₂O, DMAP, AcOEt; (d) *n*-Bu₃SnH, AIBN, toluene; (e) TsOH, aqueous MeOH; (f) NaBH₄; (g) 2,2-dimethoxypropane, CSA.

(19) The structure and identity of 19 and complete chemical shift assignments were further confirmed by a completed ¹H NMR decoupling experiments and two-dimensional NMR in the C-Me region at 400 MHz (supplementary material available).

(20) Chromatographic separation on silica gel with CH_2Cl_2 -EtOH (96:14) as the eluant.

hemiacetal and syrupy pentaacetate derivatives 17 and 19, respectively, and found to be identical in all respects with samples obtained from 20 (TLC, $[\alpha]_D$, 400 MHz and two-dimensional ¹H NMR, mass spectroscopy).

Since intermediates such as 16 and 18 can be easily converted to one of Kishi's advanced intermediates, our approach as reported herein represents a formal synthesis of the optically active antibiotic.^{21,22}

Acknowledgment. We acknowledge financial assistance provided by the National Engineering and Science Council of Canada, the CNRS for a fellowship to J.-R.P. (1978–1979), le Ministère de l'éducation du Québec and the University of Montreal. We also thank Dr. M. T. Phan Viet for recording the 400-MHz spectra and Dr. K. Tatsuta for a sample of a degradation product of rifamycin S; see ref 17.

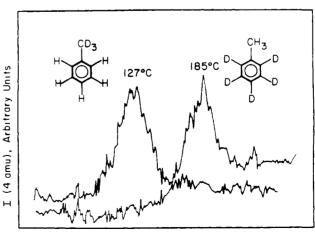
Registry No. 2, 75879-81-1; **2**, acetyl derivative, 82707-13-9; **3**, 82707-02-6; **3**, α -OH derivative, 82731-51-9; **3**, keto derivative, 82731-52-0; **4**, 82707-03-7; **5**, 82707-04-8; **6**, 82707-05-9; **6**, debenzyl derivative, 82731-53-1; **6**, aldehyde derivative, 82707-14-0; **7**, 82769-13-9; **7**, didehydro derivative, 82768-70-5; **8**, 82707-06-0; **8**, α -OH, derivative, 82707-15-1; **8**, α -OH derivative, 82707-16-2; **9**, 64526-83-6; **10**, 64526-85-8; **11**, 82707-07-1; **11**, β -chloro derivative, 82707-17-3; **12**, 82731-48-4; **13**, 82707-08-2; **13**, hydroxy derivative, 82707-18-4; **14**, 82707-09-3; **15**, 82707-10-6; **16**, 82707-11-7; **17**, 82731-49-5; **18**, 82707-12-8; **19**, 82731-50-8; (+)-rifamycin S, 13553-79-2.

Supplementary Material Available: NMR spectral data and physical constants for selected intermediates (13 pages). Ordering information is given on any current masthead page.

Additions and Corrections

General Methods of Synthesis of Indole Alkaloids. 14.^{1,2} Short Routes of Construction of Yohimboid and Ajmalicinoid Alkaloid Systems and Their ¹³C Nuclear Magnetic Resonance Spectral Analysis [J. Am. Chem. Soc. 1976, 98, 3645]. ERNEST WEN-KERT,* CHING-JER CHANG, H. P. S. CHAWLA, DAVID W. CO-CHRAN, EDWARD W. HAGAMAN, JAMES C. KING, and KAZUHIKO ORITO.

Page 3650, Table II: The δ value of C(3) of compound 24 should read "59.6".


Total Synthesis of the Yohimbines [J. Am. Chem. Soc. 1979, 101, 5370]. ERNEST WENKERT,* TIMOTHY D. J. HALLS, GERHARD KUNESCH, KAZUHIKO ORITO, RICHARD L. STEPHENS, WAYNE A. TEMPLE, and JHILLU YADAV.

Page 5376, reference 2 (missing fourth line): R. N. Guthikonda, J. Am. Chem. Soc., 94, 5109 (1972); (d) L. Töke, K. Honty, ...

Reactions of Metal-Metal Multiple Bonds. 8. Forming Mo-Mo Quadruple Bonds by Reductive Elimination (Alkyl Group Disproportionation) in the Reactions of $1,2-Mo_2R_2(NMe_2)_4$ Compounds (M=M) with Carbon Dioxide and 1,3-Diaryltriazines [J. Am. Chem. Soc. 1982, 104, 2138]. M. J. CHETCUTI, M. H. CHISHOLM,* K. FOLTING, D. A. HAITKO, and J. C. HUFFMAN.

Page 2144, last sentence in **Preparation of Mo_2(O_2CNMe_2)_4**: The sentence should read as follows—Anal. Calcd: C, 26.48; H, 4.41; N, 10.29. Found: C, 26.48; H, 4.25; N, 10.09. Coordination Chemistry of Metal Surfaces. 3.¹ Benzene and Toluene Interactions with Nickel Surfaces [J. Am. Chem. Soc. 1981, 103, 773]. C. M. FRIEND and E. L. MUETTERTIES.*

Page 777, Figure 8: The scale for the abscissa was incorrect. Figure 8 should be:

Toluene Decomposition — Ni (111) D2 Formation

Temperature (°C)

⁽²¹⁾ During the course of this work, another carbohydrate-based approach to the aliphatic segment of rifamycin S was reported by using a different strategy; see ref 3b.

⁽²²⁾ For a highly stereocontrolled syntheses of the optically active form of the aliphatic segment of rigamycin S, see: Nagaoka, H.; Kishi, Y. Tetrahedron **1981**, *37*, 3873–3888.